\[\newcommand{\FGrp}{F_{\mathbf{Grp}}} \newcommand{\Sg}{\mathsf{Sg}} \newcommand{\Hom}{\mathsf{Hom}} \newcommand{\hom}{\mathsf{Hom}} \newcommand{\epi}{\mathsf{Epi}} \newcommand{\aut}{\mathsf{Aut}} \newcommand{\mono}{\mathsf{Mono}} \newcommand{\Af}{\langle A, f \rangle} \newcommand{\dom}{\mathsf{dom}}\newcommand{\cod}{\mathsf{cod}} \newcommand{\ran}{\mathsf{ran}} \newcommand{\id}{\mathsf{id}} \newcommand{\Id}{\mathsf{id}} \newcommand{\im}{\mathrm{im}} \newcommand{\Proj}{\mathsf{pr}} \newcommand{\Con}{\mathsf{Con}} \newcommand{\Clo}{\mathsf{Clo}}\newcommand{\Pol}{\mathsf{Pol}} \newcommand{\Op}{\mathsf{Op}} \newcommand{\Th}{\mathsf{Th}} \newcommand{\Mod}{\mathsf{Mod}} \newcommand{\src}{\mathsf{src}} \newcommand{\tar}{\mathsf{tar}} \newcommand{\eval}{\mathsf{eval}} \newcommand{\fork}{\mathsf{fork}}\newcommand{\Type}{\mathsf{Type}} \newcommand{\comp}{\circ} \newcommand{\tick}{\mathsf{tick}} \newcommand{\Time}{\mathsf{Time}}\newcommand{\Tree}{\mathsf{Tree}}\newcommand{\Term}{\mathsf{Term}} \newcommand{\Mod}{\mathsf{Mod}}\newcommand{\Th}{\mathsf{Th}} \newcommand{\inv}{\ ^{-1}}\]

symbolsΒΆ

SymbolsΒΆ

The list below shows what to type (e.g., in the vscode IDE with lean extension) to produce some special characters.

AΜ„

A\bar (the closure of the set A)

BΜ„

B\bar (the closure of the set B)

𝔸

\BbbA

𝔹

\BbbB

β„‚

\BbbC (complex numbers)

β„•

\BbbN (natural numbers)

ℝ

\BbbR (real numbers)

ℝ*

\BbbR* or \BbbR^\ast (extended real numbers, \(ℝ^βˆ— = ℝ βˆͺ \{-∞, ∞\}\))

𝕋

\BbbT

β„€

\BbbZ (integers)

ℬ

\mscrB (\(ℬ(X) =\) Borel Οƒ-algebra of \(X\))

L

\mscrL

𝒫

\mscrP (𝒫(X) = the power set of X)

𝔅

\mfrakB (\(𝔅(X,Y) =\) bounded linear transformations from \(X\) to \(Y\))

𝔐

\mfrakM (usually a Οƒ-algebra)

Ξ±

\alpha (often used to denote an uncountable index)

Ξ²

\beta

Ξ³

\gamma

Ξ“

\Gamma

Ξ΄

\delta (usually a small real number)

Ξ”

\Delta

Ξ΅

\epsilon (usually a small real number)

ΞΉ

\iota

ΞΊ

\kappa (usually a large cardinal number)

Ξ»

\lambda (usually a measure)

Ξ›

\Lambda

ρ

\rho

Οƒ

\sigma

Ξ£

\Sigma

βˆ‘

\sum

∏

\prod

Ξ 

\Pi

Ο€

\pi

Ο†

\varphi

Ο•

\phi

Ξ¦

\Phi

Ο‡

\chi (χₐ = the characteristic function of a)

Ξ§

\Chi

ψ

\psi

Ξ¨

\Psi

Ο‰

\omega

Ξ©

\Omega

β„΅

\aleph

𝚀

\imath

πš₯

\jmath

β„“

\ell

fβ‚—

f\_l

fΜ„

f\bar

fΜ‚

f\hat

f̃

f\tilde

h₁

h\_1

hβ‚‚

h\_2, etc.

∩

\cap (intersection)

β‹‚

\bigcap (intersection)

βˆͺ

\cup (union)

⋃

\bigcup (union)

∧

\and or \wedge (infimum)

β‹€

\bigwedge (infimum)

∨

\vee or \or (supremum)

⋁

\bigvee (supremum)

Β¬

\neg (negation)

∘

\o or \circ

Γ—

\x or \times

βˆƒ

\exists

βˆ€

\all or \forall

∈

\in

βˆ‹

\ni

βˆ‰

\notin

∌

\nni

≀

\leq

β‰₯

\geq

βŠ†

\subseteq

βŠ‡

\supseteq

βŠ‚

\subset

βŠƒ

\supset

β‰ͺ

\ll (\(Ξ» β‰ͺ ΞΌ\) means β€œ\(Ξ»\) is absolutely continuous with respect to \(ΞΌ\)”)

≫

\gg

⋆

\star

βˆ—

\ast

β‰ˆ

\approx

∼

\sim

≑

\equiv

β‰…

\cong (isomorphism or congruence relation)

⟨

\langle

⟩

\rangle

←

\leftarrow

β†’

\to or \rightarrow

↑

\uparrow

↓

\downarrow

⟹

\Longrightarrow

⟺

\iff

↦

\mapsto

β† 

\twoheadrightarrow (a surjective map)

↣

\rightarrowtail (an injective map)

β€–

\twoheadrightarrowtail (a bijective map)

βˆ…

\emptyset

⊒

\vdash

⊨

\vDash

β«’

\vDdash

⊧

\models

β‹ˆ

\bowtie


https://ws-na.amazon-adsystem.com/widgets/q?_encoding=UTF8&MarketPlace=US&ASIN=B01MS1BWXL&ServiceVersion=20070822&ID=AsinImage&WS=1&Format=_SL130_&tag=typefunc-20 https://ws-na.amazon-adsystem.com/widgets/q?_encoding=UTF8&MarketPlace=US&ASIN=0471317160&ServiceVersion=20070822&ID=AsinImage&WS=1&Format=_SL130_&tag=typefunc-20 https://ws-na.amazon-adsystem.com/widgets/q?_encoding=UTF8&MarketPlace=US&ASIN=0134689496&ServiceVersion=20070822&ID=AsinImage&WS=1&Format=_SL130_&tag=typefunc-20 https://ws-na.amazon-adsystem.com/widgets/q?_encoding=UTF8&MarketPlace=US&ASIN=007054235X&ServiceVersion=20070822&ID=AsinImage&WS=1&Format=_SL130_&tag=typefunc-20 https://ws-na.amazon-adsystem.com/widgets/q?_encoding=UTF8&MarketPlace=US&ASIN=0070542341&ServiceVersion=20070822&ID=AsinImage&WS=1&Format=_SL130_&tag=typefunc-20 https://ws-na.amazon-adsystem.com/widgets/q?_encoding=UTF8&MarketPlace=US&ASIN=0070542368&ServiceVersion=20070822&ID=AsinImage&WS=1&Format=_SL130_&tag=typefunc-20

Complex Analysis Exams

Please email comments, suggestions, and corrections to williamdemeo@gmail.com